Coursera Deep Learning Specialization Notes:
Neural Networks and Deep Learning

Amir Masoud Sefidian

Version 1.0, November 2022

sefidian.com

CONTENTS CONTENTS

Contents

1 Neural Networks and Deep Learning
1.1 Logistic regression as a neural network
1.2 Neural networks oL
1.3 Activation functions
1.4 Random initialization

N G TG NGTIN

CONTENTS CONTENTS

Preface

A couple of years ago I completed Deep Learning Specialization taught by Al pioneer Andrew Ng. I
found this series of courses immensely helpful in my learning journey of deep learning. After years, I
decided to prepare this document to share some of the notes which highlight key concepts I learned
in the first course of this specialization, Neural Networks and Deep Learning. This course teaches
you the theory behind deep learning and applies this technology in the real world, such as creating
and training a simple neural network and understanding the key parameters of deep learning. Notes
are based on lecture videos and supplementary material provided and my own understanding of the
topics.

The content of this document is mainly adapted from this GitHub repository. I have added
some explanations, illustrations, and visualization to make some complex concepts easier to grasp for
readers. This document could be a good reference for Machine Learning Engineers, Deep Learning
Engineers, and Data Scientists to refresh their minds on the fundamentals of deep learning. Please
don’t hesitate to contact me via my website (sefidian.com) if you have any questions.

Happy Learning!
Amir Masoud Sefidian

https://www.coursera.org/specializations/deep-learning
https://github.com/twidxuga/notes-on-deep-learning-specialization-deeplearning.ai
sefidian.com

1 NEURAL NETWORKS AND DEEP LEARNING

1 Neural Networks and Deep Learning

1.1

1.2

Logistic regression as a neural network
A small-scale example of a neural network with a single neuron (and still useful as a classifier).
n: number of features, m: number of samples
— I, 2
LY = [y() y@ y(m)]lxm

Logistic Loss / Binary Cross Entropy Loss:
L(y,a) = —[yloga+ (1 — y)log(1 — a)]

Inputs: X = [x(l) JLC) B I(m)]

nxm

Vectorized Optimization:
Z=WTX+b

A=0(2) = 7=

dZ =A-Y
dW = LXdz"

db=2L13"dz

W+ W-—-a - dW,b<b—a-db

Note: d stands for “derivative” where there is only a single variable. 0 stands for “partial
derivative” where there are multiple variables.

Neural networks

Typically the input layer is not counted as a layer when counting the layers of a neural network,
only the hidden layers and the output layer are considered. The output layer is NOT a hidden
layer.

Al is the activation for layer I, W is the weights matrix, and b/ is the bias term. g(z) is the
chosen activation function.

The learning rate « scales the size of the gradient descent steps, and therefore determines how
fast it converges (though values too high can actually make it not converge).

Regarding notation ay](i){k} means the activation (could be any other parameter) on the j**

unit/neuron of the I** network layer, for the i*" example/data point of the k** minibatch.

Notations:

L: # of layers

nll: # of units in layer

bll: biases in layer I (size: (nl,m))

ZW: outputs in layer [(size: (nl,m))

Al: activations in layer I (size: (nl,m))

W: Weights connecting layer [— 1 to [(size: (nld,nli=1))
nlO = nx: # of input features

1.3 Activation functions 1 NEURAL NETWORKS AND DEEP LEARNING

() _ .ﬁ

Xy NN S

| .I‘ h(f)
o@D
xiij ’

Figure 1:

Forward Propagation for layer [(vectorized):
ZW — wll gl=1] 4 pll

Al = gl 710y

Backward Propagation for layer [(vectorized):

dzl = g Al gl (Z00)

awll = L gz at-nyr
m

1
dvll = Enp.sum(dZ[l],a:L‘is = 1, keepdims = True)
dAl=1 — (W[l])sz[l]

Note: * is the element-wise multiplication
Parameter Update for layer [(vectorized):
wl — wlh — . dW[l], where « is the learning rate
bl) — db[l], where « is the learning rate

1.3 Activation functions

e Sigmoid (or logistic function) - usually used for the output layer only (because it outputs either
1 or 0), and not for the hidden layers because its derivative can be close to 1 for values of z
further away from the origin.

1.3 Activation functions 1 NEURAL NETWORKS AND DEEP LEARNING

e tanh is better than sigmoid for hidden layers (though it is an offset sigmoid) only because it is
defined between -1 and 1, which means that for the mean of zero, the tanh will be close to 0 as
well, which can be useful for computation.

2

tanh(z) = m

— 1, tanh/(z) = 1 — tanh(z)?

o Rectified linear unit (ReLU) - ReLU(z) = max(0, z) - is the de facto standard for linear units
nowadays, its derivative is easy to calculate (not defined for z = 0, but we can work around
that with a convention on what 0 means), and does not suffer from slow convergence of gradient
descent due to derivative being close to 0.

0 ifz<0 0 ifz<0
ReLU(Z)_{z if z >0 ’ReLU,(z)_{ 1 ifz>0

e Leaky ReLU - maxz(0.01 z, z) - Similar to the ReLU, but instead of being zero for values of
z lower than 0, it actually has a small positive slope in that section, so its derivative is not 0,
making it easier for the optimizer (e.g. gradient descent) to converge. In reality normal RelU
are still the standard though.

[001z ifz<0 ;o] 001 ifz<0
LReLU(z)—{z 23>0 ,LReLU(z)—{ 1 23>0
Perceptron Sigmoid Tanh

1.0 P_ 1.0 &m 1.01
g'g_ D(z) 02 tanh(z)
KR d(z anh(z
0.4 0.0 /
0.2 : —0.5
0.0 l=—= : 0.01= , . —-1.01= : :
—5 0 5 -5 0 5 -5 0 5
RelLU Leaky ReLU ELU
61 6 ” T E—
o 0.1z if 2 < (e*—1if 2
g4 max(U, z) 4 41 2if » >0
2 21 2]
] 0
0- 0

-5 0 5 -5 0] -5 0 5
Figure 2: Activation Functions
Why do we need some sort of activation function anyway?

e If we had none, the activation would be linear, and all layers would have linear activation
functions, resulting in the NN activation being itself a linear activation function, which negates
the usefulness of the hidden layers. There must always be a hidden layer.

1.4 Random initialization 1 NEURAL NETWORKS AND DEEP LEARNING

1.4 Random initialization

e Two neurons are considered symmetric if they are doing the exact same computation.

e We avoid that by using random initialization rather than zero initialization, otherwise all neu-
rons/units will keep on being symmetric throughout all backprop iterations.

e b (bias) doesn’t require random initialization like the weights W.

e W should be initialized to small random values (multiply by 0.01 for example), to allow faster
convergence of gradient descent with sigmoid or tanh activation functions.

	Neural Networks and Deep Learning
	Logistic regression as a neural network
	Neural networks
	Activation functions
	Random initialization

